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� Abstract
Experimental data from single-molecule DNA-protein experiments, such as experi-
ments using optical traps or magnetic tweezers, typically contain steps, plateaus, or
dwell regions that are obscured by thermal and other noise sources. We present a non-
parametric method for detecting step-like features in noisy biological data sets. Our
algorithm does not assume that the steps can be modeled as Heaviside functions or any
particular parametric form. No assumptions about the noise source, such as whether
the noise is Gaussian or colored, are made either. Instead, for detection of plateaus, the
algorithm uses the novel method of analyzing a probability distribution function of the
data values. The vast majority of previously published methods for step detection rely
on statistical fitting of step functions with the flat segments linked by vertical segments.
Our approach is intended for use on data which cannot be modelled as a series of step
functions but applies to step functions as a special case. These type of data traces have,
so far, been difficult to characterize effectively. We examine the performance of the
algorithm through systematic simulation studies and illustrate the use of our algorithm
to analyze single molecule DNA-protein micromanipulation experiments carried out
by our laboratory. The simulation results and experimental validation suggest that our
method is very robust, avoids overfitting, and functions effectively in the presence of
noise sources characteristic of single molecule experiments. VC 2015 International Society

for Advancement of Cytometry
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METHODS to analyze time series or other signals to detect regions in which the sig-

nal is constant are useful in many different fields of science and engineering. Single-

molecule DNA-protein micromanipulation experiments, for instance, often involve

studying the binding and force-induced unbinding of proteins from a single tethered

DNA molecule. After the DNA tether is extended under a small force, proteins are

introduced into the sample cell. These proteins may bind to the DNA and compact

the DNA by stabilizing loops, bends, or kinks. Once the DNA is compacted, the force

can be increased until just large enough to drive off the bound proteins. When the

end-to-end tether extension is measured, the unbinding events will be seen a jumps

between constant-extension regions. This type of step-like structure can also be

found in other types of single molecule experiments in biology, and often arise in

areas such as electrical engineering or econometrics. In this article, we present a novel

method for automatically finding steps in such data series.

Algorithms that perform analyses of this kind are often referred to as “step-

finding,” “step-fitting,” or “step detection” algorithms. The general goal of algo-

rithms in this family is to identify regions of a data trace where the signal

maintains a certain level for some time and then changes to another level. This
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change is frequently abrupt, as in a step described by the

Heaviside function. In such a case, the linking segment

between successive steps is defined to have a slope of infin-

ity. While it is rare to encounter signals in nature with

purely step-function type jumps, it is common to model

step data as a series of such functions. Indeed, many step

detection algorithms in existence have utilized this princi-

ple as a basis for their analysis of the data (1).

A key consideration in using such techniques is how well

the signal can be modeled this way and what effect departures

from the model have on the results. Another important con-

sideration is preventing over-fitting. For instance, by using

suitable number of parameters, it may be possible to detect all

steps in a particular type of noisy signal with very high confi-

dence. However, when these settings are applied to other sig-

nals, the algorithm’s performance may decline rapidly. Thus, a

step finding method should be robust enough to be applied to

large classes of signals without requiring re-adjustment of

parameters to ensure accurate results. Finally, the signals of

interest inevitably have large noise components. The noise

may or may not be Gaussian and the algorithm should,

ideally, perform well in all cases.

A number of previous studies have examined different

approaches to the step-finding problem. Kalafut and Visscher

(2) describe the application of the Schwarz Information Crite-

rion (SIC) to fitting step functions to a data trace. The SIC is

used as a way to prevent over-fitting by penalizing fits that uti-

lize too many parameters.

Carter and Cross (3) propose an algorithm that uses the

two sample student’s t-test to evaluate steps. This algorithm

compares a given data point with other individual data points

within a certain time range, resulting in the algorithm catego-

rizing each point as belonging to a dwell (plateau), forward

step, or downward step.

A method using wavelet transform multiscale products was

proposed by Sadler and Swami (4). Multiscale products were

shown to be effective in isolating the abrupt step transitions in

signals, which in turn allows identification of the steps.

Kerssemakers et al. (5) analyzed step data using a v2

reduction principle. By comparing a series of step best-fits to

a series of counter-fits, in which the fitted steps are displaced

to be in between the best fits, the algorithm is able to

approach an optimal number of steps fitted to the data.

Velocity calculation and thresholding is the method

described by Levi et al (6). This algorithm calculates local veloc-

ities of the data—the change in position over time. If the velocity

is below a certain threshold, that region of the data is assumed to

be a level step. If the velocity is above the threshold, the data

must be subdivided and the analysis is repeated. This method

also uses the Akaike Information Criterion to penalize over-

fitting of the data.

Arunajadai and Cheng (7) use a combination of General-

ized Least Squares and Bayesian Information Criterion to

reduce over-fitting of the step functions to the data with suc-

cess. Their method is notable for its avoidance of assuming a

particular type of noise. Rather, it observes and determines

the noise correlation throughout the data to more accurately

detect the underlying signal.

Pair-wise distribution functions have also been used to

map steps in a data trace by Kuo et al. (8) and Block et al. (9),

respectively. Such algorithms can be useful when the data con-

tain step sizes that are relatively constant; step-sizes that vary

over a wide range are not handled well by such methods.

Other groups, including Milescu et al. (10), have based their

step detection algorithms on knowledge of underlying princi-

ples that generate the data and a Markovian model process to

identify steps in the data. These methods are intended for very

specific applications, and as such, it is difficult to compare

them to more generalized algorithms.

Finally, we refer the method of Herbert et al. (11), which

uses an eightfold averaged log-dwell histogram to extract

peaks corresponding to dwells of RNA polymerase movement

along base pairs of a DNA tether. The first step of this method

is similar to ours—calculation of relative probabilities for

extensions—but diverges quickly after that to meet the spe-

cific needs of the algorithm’s application in that situation.

Many of the aforementioned techniques use statistical

methods to fit a series of step functions to the data. This means

that the transition between steps is instantaneous. For data in

which the steps do not feature a linking segment slope of infin-

ity—data for which the linking segments may have a variable

slope—such algorithms may not be so effective. Furthermore,

several of the methods make assumptions about the underlying

noise properties. While it is true that independent Gaussian

white noise is the predominant type of noise encountered exper-

imentally, it is not always the case. Optomechanical systems that

are used in biology, biological physics, and electrical engineering

can introduce frequency-dependent or colored noise. Analyzing

a data trace that features correlated noise with an algorithm that

assumes uncorrelated noise can lead to problems.

Here, we present a novel method for detecting steps (or

plateaus) in a noisy data trace that does not assume that the

signal can be modeled as a series of step functions and does

not assume any specific type of noise. Our aim is to develop a

generalized method that requires little knowledge of the noise

or the underlying mechanism that produced the data. The

plan of the article is as follows. In the next section, we describe

the algorithm and the simulations used to test it. This is fol-

lowed by description of the performance metrics used to study

the algorithm’s performance. We then describe how we

obtained experimental data from single molecule experiments

that were analyzed using the algorithm. In the following sec-

tion, we describe the results of our simulation and experimen-

tal studies. This is followed by a discussion section where we

place our method in the context of previous studies in step

detection. We conclude with some observations on future

developments of our method.

MATERIALS AND METHODS

Step-Trace Simulations

The simulated signals consist of a series of individual

“steps”, which are horizontal line segments or “plateaus” of
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adjustable length, separated by line segments, also of adjusta-

ble lengths, with positive slopes. Each step is characterized by

three quantities: (a) the step length, which is the length of the

plateau; (b) the step height, which is the vertical distance

between the end of one plateau and the start of the next, and

(c) the plateau separation, which is the linear distance

between the end of one plateau and the start of the next one.

The slopes can be set from near zero to arbitrarily large values,

and are calculated from the ratios of the step heights to pla-

teau separations. The slopes of the connecting segments are

not specified explicitly. The goal is to determine the locations

of the steps, which are specified in arbitrary units correspond-

ing to the y-coordinate value. Figure 1 shows an example data

trace.

A MATLAB program was written to generate simulated

data traces based on the parameters described above. The

input variables consist of: (1) the number of steps to be gener-

ated, (2) the step separation, (3) the step height, (4) the step

length, (5) whether or not to include normally distributed

noise in the final signal, and (6) the noise width, r, which is

the standard deviation of the normal distribution. Input

parameters 2, 3, 4, and 6 are specified in arbitrary units.

Similar methodology was used to generate data sets with

Poisson-distributed noise. See Supporting Information for

details.

From the step separation and step height, a slope is calcu-

lated for the link between successive plateaus, which is then

used to determine the y-coordinates from the x-coordinates

for the segments linking the plateaus. Once these segments

have been determined, the plateaus are found by extending

the last point y-coordinate of the linking segments for the

number of points specified by the step length parameter. This

generates the solid line data trace of Figure 1. From here, the

noisy data trace (dots in Fig. 1) is created by multiplying a

normally distributed random number in the interval [-1,1] by

r and adding that to the red base signal. Thus, for r 5 4, the

noise will modify the original base signal by some additive

value in [-4,4] in accordance with the normal distribution, for

each point in the base signal.

All three step parameters in the simulation program can

be assigned randomized values from a user-defined interval

within a single simulated signal. This allows us to more closely

emulate experimental data. Step lengths, step heights, and

step separations may be drawn from uniform or normal dis-

tributions, and the user may independently specify the range

for each parameter: for instance, [20, 100] for step length, [50,

200] for step height, [40, 80] for step separation. The data

traces for such simulations are calculated in essentially the

same way as for constant parameter traces, except that for

each single step a random parameter is chosen prior to calcu-

lating the slope of each linking segment and length of each

plateau; the noisy data trace is generated in exactly the same

way as in other examples.

Step-Finding Algorithm

Data preprocessing. While the step-finding algorithm is

capable of identifying steps in raw data, there are many cases

in which data preprocessing can be helpful. In situations

where a data set may see benefit from preprocessing, an edge-

preserving bilateral filter was adapted from the DIRART

Image Processing MATLAB toolbox (12) to best preserve the

step-like features in the data. The bilateral filter assigns a new

coordinate for each point in a time series based upon a two-

dimensional Gaussian-weighted kernel. The basic inputs to

the bilateral filter consist of the data, filter width, and filter

height. The filter width and height determine the size of the

Gaussian-weighted kernels in the horizontal (x-coordinate)

and vertical (y-coordinate) directions, respectively. Increasing

the filter width would include more points in the x-coordinate

range when calculating the new value for each point, while

increasing the filter height would use more points in the verti-

cal y-coordinate. As a special case, using a width of zero for

either parameter would eliminate using any points in that

dimension to calculate the new value. A filter height of zero

would result in a purely horizontal Gaussian kernel, while a

filter width of zero would result in a purely vertical Gaussian

kernel. When the data were filtered using this method, filter

width and height of 10 and 10 were used. Figure 2 shows an

example data trace prefiltering and postfiltering.

Step-detection algorithm. In Figure 3a we plot in blue a

portion of a data trace that is to be evaluated by the algorithm,

with the base line signal shown as a solid red line in Figure 3b.

The raw data shown in 3a have noise r 5 3 and are unfiltered.

From here, the first stage of the step-detection algorithm is

determining the discrete probability density function (PDF)

of the data trace (Fig. 3c, red). The discrete PDF is a histo-

gram that is calculated by counting the number of data points

for discrete bins with each bin defined by an interval of y-

coordinates. The user may generate the PDF in a completely

automated way. In this case, the algorithm will find the mean

difference between the y-values of successive points

Figure 1. An example of a typical data trace and the various

parameters used to describe the steps is shown, with arbitrary

units of position and time along the y and x axes, respectively.

Step length represents the duration of the horizontal component

of the step. Step height refers to the vertical distance between

subsequent steps. Step separation is used to describe the hori-

zontal distance between subsequent steps. These three parame-

ters can be used to define an entire data trace of unique steps.
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throughout the entire data set, which gives a rough idea of the

“width” of the data. This number is then used as the bin size

for the data. Alternatively, the user may specify a bin size to be

used. The result is the transformation of the data from

position-time space to probability-y-position space.

Next, the second derivative of the PDF is calculated using

finite differences (Fig. 3d, green). This helps to emphasize

changes in the direction of the signal, which is the core infor-

mation used to identify values of the y-coordinates where

there is a high density of data points and therefore a signifi-

cant probability of the existence of a plateau. Then, the second

derivative is added back into the original PDF (Fig. 3e,

magenta) and the result is squared (Fig. 3f, blue) to make all

values positive. This step of summing the original PDF and its

own second derivative is performed because we find that it

helps to amplify the portions of the signal at which there are a

simultaneously large changes in direction and large number of

points while reducing the prominence of the signal where

there are fewer points and smaller changes of direction.

After these steps, the data have been transformed into a

system of peaks and valleys in which the peaks represent the

y-coordinate values with a higher probability of data points

residing at that value than at the surrounding values and the

valleys representing a low probability of points existing at that

y-coordinate value with respect to the surrounding values.

While identification of peaks is possible using the result-

ing distribution, nearly all examples will show better results if

the PDF is smoothed. A very effective way to smooth this sig-

nal is to use our own local extrema interpolation averaging

(LEIA). The LEIA method we have created finds all local max-

ima and local minima separately and then uses a common

interpolation method (linear or cubic spline) to determine

two smoothed distributions using the local maxima and local

minima respectively. Once these two signals are obtained, they

are then averaged over the entire data range to obtain a new

data distribution (Fig. 3g, black).

Next, a MATLAB routine extrema.m is used to find the

peaks, which are then analyzed by a peak scoring method

based on the arc lengths of all peaks in the data series. For

each local maxima, the arc length along the LEIA smoothed

function from the minima preceding a maxima to the minima

succeeding it is calculated. The standard deviation of the set

of arc lengths is calculated. The set of arc lengths is trimmed

of the largest value and the standard deviation is calculated

again using the trimmed set of arc lengths. This is repeated for

the entire set and the percent difference of the standard devia-

tion is calculated after each iteration of the trimming step.

The point at which the largest percent difference between

standard deviations of trimmed sets occurs is used to differen-

tiate between the significant peaks and noise peaks. The rea-

soning here is that the standard deviation will show the

greatest change in percent difference when the peaks with

large arc lengths are trimmed from the set of arc lengths and

only small, relatively constant peaks remain. This is generally

sufficient to successfully determine which peaks are significant

enough to be the result of a plateau in the data.

These significant peaks are then the output of the algo-

rithm, representing the points at which the data signal has a

local plateau. Figure 3h plots the original signal (from Fig. 3b)

along with the locations (dashed black lines) of the peaks

from Figure 3g, showing that the peaks correspond to sections

of the signal that contain steps.

Performance Analysis

Determining the performance of the algorithm on the

simulated data requires comparing the detected steps from the

algorithm against the known steps in the base signal with gen-

erated data. This involves the simple process of comparing

two lists and finding the closest elements on both. The stand-

ard for accuracy of a detected step was whether it fell within

half-noise-width of the base signal step. Using this criteria,

three performance metrics were computed: detected steps,

false positives, and false negatives. Detected steps are those

that fall within one-half-noise-width of the known steps. False

positives are results that do not correspond with any known

step and false negatives are known steps not properly identi-

fied. In the event where multiple steps were inferred by the

algorithm within one-half-noise-width of a single real step,

the inferred step that is closest to the real step was counted as

a true detected step and the other(s) as false positive(s).

Experimental Data

We used the algorithm to detect histone complex binding

and unbinding events in single-molecule DNA micromanipu-

lation experiments. These experiments are performed on a

horizontal magnetic tweezers systems (13). We show a sche-

matic of the instrument in Figure 4a.

The magnetic tweezers system uses a Nikon Dyaphot

inverted light microscope to observe fluctuations in beads that

are attached to a single 48.5 kbp lambda-DNA molecule. One

bead on the DNA is a 2.8 lm super-paramagnetic bead and

the other is a 3 l nonmagnetic polystyrene bead. A 1 mm

diameter glass capillary is pulled to form a micropipette with

a tip diameter of �2 l and is clamped by an aluminum fixture

Figure 2. The effects of using the bilateral filter preprocessing on

noisy data are shown. The solid black line represents the base

signal of randomly chosen step parameters. The empty circles

are the signal after normally distributed noise with r 5 9 is added.

The black dots represent the result of the noisy data after the

bilateral filter with filter height and width both equal to 10. Posi-

tion and time are in arbitrary units.
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that is held stationary by a hydraulic micromanipulator over

the microscope objective. This aluminum fixture also holds

another glass micropipette that is used to inject proteins close

to the DNA strand. Both the DNA micropipette and protein

micropipette are connected via Tygon tubing to 10 mL

syringes that are placed in syringe pumps. An Eppendorf

micromanipulator moves an aluminum platform upon which

a glass chamber for the experiment is placed.

Figure 3. This series of plots shows a step-by-step breakdown of the method by which our algorithm obtains the locations of plateaus in

an unfiltered data trace with noise r 5 3. For each plot, the thick (bold) colored line represents the signal at that specific stage of the algo-

rithm, with other previous steps shown in thinner colored lines for perspective. A: [Blue] A segment of a noisy data trace with randomly

assigned step parameters. B: [Red] The baseline signal for that data set shows four (4) areas where the signal is constant. C: [Red] The ini-

tial probability distribution function (pdf) result is plotted. D: [Green] The second derivative of the pdf is shown. E: [Magenta] The second

derivative from 3D is added back into the original pdf. F: [Blue] The result of 3E is squared. G: [Black] The resulting signal from F is modi-

fied using LEIA. H: After identifying the significant peaks from G and determining the center of those peaks, the results [dashed black] are

plotted against the raw data from B.
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This glass chamber is built using #1 glass cover slips for

the floor and ceiling with 1 mm thick cut pieces of glass

microscope slides forming three walls, while the fourth side

remains open for movement of the glass micropipette. Also

attached within the glass slide chamber is a small permanent

magnet. As the chamber moves relative to the stationary

micropipette and DNA strand, the magnet’s field imparts vari-

able force upon the super-paramagnetic bead and therefore

tension along the DNA strand in the range of 0.05–100 pN.

The magnet can be moved towards the functionalized DNA

strand at rates as low as 0.320 lm/s.

The objective used is a 403, 0.65 NA bright-field objective

with a working distance of 500 lm. A CCD camera collects

grayscale AVI format movie files. The movies are analyzed post-

experiment using MATLAB software to derive the locations of

the beads and the force by way of the fluctuation-dissipation

theorem. For experiments in which proteins were injected,

bound to the DNA strand, and subsequently mechanically

driven-off the tether, the step finding algorithm was used on

the interbead distance measurements to deduce the DNA exten-

sions at which protein ruptures occurred.

The general procedure for a DNA-protein binding experi-

ment begins by filling the sample chamber with the desired

buffer and then placing 20 lL of bead-conjugated lambda-DNA

into the sample chamber. The aspiration pipette is used to

produce a negative pressure on the polystyrene bead of a DNA-

bead complex. Upon successful acquisition of the DNA strand,

it is moved to within 2,000 lm of the magnet. At this distance,

the magnetic field strength is such that�1 pN of force is applied

along the DNA molecule. This force is sufficient to observe full

extension of the DNA molecule and to note any behavior that

may be abnormal. If the DNA complex is fully extended and

showing appropriate behavior, the proteins are injected at a rate

of roughly 1 lL per minute toward the DNA molecule. The

DNA molecule is then observed as the proteins bind to it. When

the proteins are fully bound and there is no longer any change

in the extension of the DNA molecule, the distance between the

DNA and magnet is reduced by moving the magnet towards the

DNA molecule that is being held steady over the objective. As

the magnet moves closer, the field strength increases and yields

a greater force on the DNA molecule. In Figure 4b, we show sev-

eral images from an experiment in which the force is increased

and the DNA length is recovered. Proteins that are bound to the

DNA molecule will then rupture; different proteins will dissoci-

ate from the molecule at different forces. In between protein

ruptures, the DNA molecule will be at a constant extension.

Locating these regions of constant extension is the task of the

step-finding algorithm and the results of those locations is used

to infer the binding and unbinding characteristics of the

proteins.

RESULTS

Simulation Results

Simulated data were generated as described in the previ-

ous section to test the performance of the algorithm in

response to changes in each individual step parameter: length,

height, and separation. We refer again to Figure 1 to define

these parameters, where the step length describes the duration

of the dwell at a certain position or y-value, the step height

describes the vertical distance between successive dwells, and

the step separation describes the horizontal distance between

successive dwells. Additionally, for all permutations of these

parameters tested, the noise width was changed between 1 and

9. Tests were carried out by holding two parameters constant

at 50 (arbitrary units as discussed in the methods section) and

varying the other parameter from 0 or 1 to 90. Since step

length or height of zero eliminates any plateaus in the data,

those parameters start at 1. However, a step separation of 0 is

possible as it corresponds to a canonical step function, and so

for step separation the simulated data begins at zero. While

holding two parameters constant at 50 and varying the other

from 0 or 1 to 90, each parameter triplet is repeated 100 times

by drawing from a distribution with a given noise width.

For example, the first parameter set of [1,50,50] for

[height, length, separation] is generated 100 times by drawing

the noise component from a normal distribution of width 1.

This parameter set is then repeated 100 times with noise of

width 3; then 100 times with width 5; and so on until noise

width of 9.

Next, the independent parameter (in this case height)

would be increased to 10, and so a parameter set of [10,50,50]

Figure 4. A: A schematic of the horizontal magnetic tweezers

instrument used for the single-molecule DNA manipulation

experiments. B: Representative images from a single-molecule

DNA-protein extension experiment. Shown are the two beads,

which are connected by a single molecule of dsDNA. The force is

increased on the molecule in the images from left to right, and

the DNA-histone complexes subsequently dissociate and the

DNA resumes its normal contour length. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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is simulated 100 times, first with noise width 1; then with

noise-width 3, and so on until noise width 9. This process is

repeated until finally a parameter set of [90,50,50] is gener-

ated. This process is similarly repeated for step length by vary-

ing the parameter triplet from [50,1,50] to [50,90,50], with

each parameter triplet used to generate 100 traces for each of

5 different noise widths. Therefore, each single parameter is

tested for 10 different values, at 5 different noise widths, and

for 100 replications (up to noise-induced fluctuations); in all,

this led to 5,000 runs for each parameter, and 15,000 data sets

in total. For all of these trials, the data was analyzed without

any preprocessing or filtering.

To test the algorithm in more realistic cases, it was

used on both randomized simulated data and experimental

data. The randomized simulated data were generated as

described in the methods section, with input parameters

of [20 200] for all three parameters of length, height, and

separation. Thus, each step is randomly assigned a unique

linking segment slope and step length. With parameters

for step separation and step height ranging from 20 to

200, linking segment slopes between 10 and 1/10 are possi-

ble for instance. These ranges were chosen as they are typi-

cal of the parameters observed in the DNA-protein

experiments. Normally distributed noise was added with

noise width r ranging from 1 to 5. These trials were ana-

lyzed both without and with the bilateral filter pre-

processing step. Additionally, experimental data were used

from DNA-histone binding and unbinding tests described

in the methods section.

Algorithm Performance

The relationship between algorithm effectiveness and

step height is shown in Figure 5a. This figure plots the percent

of steps found against the step height for various noise width

r. The data sets for these trials were not filtered prior to analy-

sis. It is observed that at very low step heights—in this case,

step height of 1 is equal to or less than the noise width—the

algorithm has difficulty identifying steps, with only about

10% of steps found for all r. A general trend is evident in Fig-

ure 5a that the larger the r, the larger the step height needs to

be for the algorithm to correctly identify the steps. For r 5 9,

the algorithm has difficulty identifying >60% of steps for any

step height value. Correctly identifying >90% of steps for

noise widths of 1, 3, and 5 requires step heights of 20, 50, and

80, respectively. This relationship between step height and

noise is expected since noise introduces variability of the sig-

nal in the vertical direction, and it follows that greater noise

width values require greater vertical step heights in order for

the algorithm to discriminate between neighboring steps.

In Figures 5b and 5c, we plot the false positive and false

negative rates for these trials. For r 5 1, both rates fall rapidly

to <5% by a step height of 20, and eventually reach zero false

step identifications. When r 5 3, the algorithm requires a step

height of 50 before it has false positive and false negative rates

of less than 5%. In general, we observe an inverse relationship

between the percent steps found and the rate of false positives

and false negatives. We also find that the rates of false positives

and negative are essentially equal to each other for these trials.

In Figure 6a, the performance of the algorithm as a func-

tion of step length and noise is plotted. Again, the raw data

was analyzed without any filtering. Similarly to the step height

plot, we found that a longer step length—and therefore more

points at that y-coordinate value—increased the likelihood

that the algorithm would identify steps correctly. For step

length of 1, it is extremely difficult for the algorithm to extract

steps since the “gap” between successive sloped linking seg-

ments is minimal and steps are nearly nonexistent. For each r,

there comes a point where an increase in step length does not

Figure 5. A: The average percent of steps found for trials with

variable step height is plotted for several noise width r. The unfil-

tered data were analyzed for these simulations. In these trials,

step length and step separation were held at 50 points each while

step height was assigned values of 1, 10, 20, 30, 40, 50, 60, 70, 80,

and 90. Each step parameter tuple, that is, [40,50,50], was tested

with 100 different sets of normally distributed noise. B: The aver-

age number of false positive step identifications are plotted for

the same trials. C: The average number of false negatives for the

same trials are plotted. Step height in arbitrary units.
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have much impact on the ability of the algorithm to correctly

identify the steps. With r 5 1, the algorithm reaches 100%

effectiveness at step length of 30. For r 5 3, the algorithm

reaches maximum effectiveness of �92% at step length of 50

and remains close to that for the rest of the step lengths. Simi-

larly, increasing r to 5 shows a maximum effectiveness at step

length of 70, with higher step lengths remaining close to

�60% effectiveness.

Figure 6b shows the rates of false positives for these trials,

and Figure 6c plots the false negatives. These plots show a

similar behavior to that of the response to step height. For

r 5 1, the rates decline to near zero as the step length

approaches 20. For r 5 3, the false positive rate reaches 5% at

a step length of 50 and then remains relatively constant. Simi-

larly, when r 5 5, the algorithm maintains an essentially con-

stant rate of 50% false positives after step lengths of 60. For

high values of noise, such as r 5 9, the rates of false positives

and false negatives both see very little fluctuation over all

ranges of step length at around 80%. Again, as with step

height, these plots for false positives and false negatives essen-

tially mirror the plots for the percent of steps found.

The algorithm performance as a function of step separa-

tion is shown in Figure 7a. As in Figures 5 and 6, the data in

these trials were processed without any filtering. In opposition

to the other two parameters, algorithmic effectiveness here is

inversely proportional to step separation. For very low noise

(r 5 1), the algorithm can identify nearly all steps for each

step separation value in the plot. As the noise width r
increases, the decrease in algorithm effectiveness occurs at

lower step separation values as expected. For noise width

r 5 3, the algorithm shows reasonable performance of

>95% recognition until the step separation reaches 50. Step

recognition for r 5 5 drops below 95% when step separation

is >20, and at r 5 7 the recognition rate is above 95% only

for a step separation of 0. A larger r inhibits the algorithm’s

ability to successfully identify >90% of steps for any step

separation.

Figures 7b and 7c plot the false positive and false negative

rates, respectively, for these trials. At r 5 1, the algorithm is

able to limit false identifications of both kind to under 5% for

all step separation values. For r 5 3, only after a step separa-

tion of 50 does the algorithm exceed 5% false identifications

for both positives and negatives. Increasing the noise width to

r 5 5, we find that beyond step separation of 30, the algo-

rithm exceeds 5% false identification rate. Akin to the rates

for false identifications in trials, which vary the step height

and length, the rates for false identifications as step separation

varies is essentially inverse to the rates of steps found as plot-

ted in Figure 7a.

We also analyzed data sets with Poisson-distributed noise

and found that the algorithm’s performance was generally

unaffected by the choice of the noise distribution. See Sup-

porting Information for details.

Typical data from an experiment as discussed in Methods

and Materials, and as shown in Figure 4b, is a plot of bead

separation (DNA extension) over time. Figure 8a shows a sub-

set of this information along with the results of applying the

step-finding algorithm to experimental data. The black lines

were automatically identified by the step-detection algorithm

and serve to identify the areas of constant DNA extension. In

between the black lines are regions of increasing extension,

which is the result of a histone complex dissociating from the

DNA molecule. Once these extensions are determined for an

experiment, the change in extension between subsequent steps

is calculated. A histogram of the step jumps for several experi-

ments is plotted in Figure 8b. These results show peaks in the

number of rupture events at 50, 90, and 130 nm. These data

agree with the known model for DNA-histone octamer bind-

ing which loops about 45–50 nm of DNA in approximately

Figure 6. A: The average percent of steps found for trials with

variable step length is plotted for several noise width r. The unfil-

tered data were analyzed for these simulations. In these trials,

step height and step separation were held at 50 points each while

step length was assigned values of 1, 10, 20, 30, 40, 50, 60, 70, 80,

and 90. Each step parameter tuple, that is, [40,50,50], was tested

with 100 different sets of normally distributed noise. B: The aver-

age number of false positive step identifications are plotted for

the same trials. C: The average number of false negatives for the

same trials are plotted. Step length in arbitrary units.
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one and three quarter turns around each core particle (14).

Thus, jumps of 90 nm should represent two histone octamers

dissociating at the same time, 130 nm jumps three histone

octamers, and so on. Additionally, the force and step jump

distance can be used to calculate the binding energy of the his-

tone octamers. These calculations result in energies of about

20 kbT (data not shown) which agrees with estimates in the

literature (15,16).

In Figure 9, the results of randomized step parameter

testing are plotted, trials which most closely represent actual

data from single-molecule DNA extension experiments. The

solid line represents the percent steps found when the raw

unfiltered data are analyzed using the algorithm, while the

dashed lines utilize bilateral filter preprocessing. Each point

represents the average percent steps found for 100 replications

at each noise width r. The unfiltered analysis shows �90%

steps found for r 5 1 to r 5 4, dropping down to 80% at r
equal to 5. However, with preprocessing, performance

improves to >90% steps found at all noise widths. The excep-

tion is for r� 2 where using the unfiltered data results in bet-

ter performance. Also, note that the unfiltered data have

increasing standard error in the percent steps found as noise

width grows, while the filtered data sets maintain a relatively

constant standard error for all r. Also in Figure 9, we show

the false positive results from these trials. The dotted line

shows the false positives from the trials on raw data. We see

that false positives number less than on average for noise

widths of <2, growing in number to 27 at a noise width of 5.

Conversely, the false positives for the trials in which bilateral

filter preprocessing was used are plotted with the dash-dot

line. Interestingly, the number of false positives decrease over

the range of noise widths tested here, going from about 12

false positives at r 5 1 to 8 false positives at r 5 5.

The algorithm’s processing times were also evaluated as a

function of the number of steps and the number of points in a

data set. The relevant methods and results are described in the

Supporting Information.

DISCUSSION

The step-detection algorithm we present provides a tool

for unbiased automatic detection of plateaus in a data signal.

We have demonstrated that it is able to accurately determine

plateaus in a data set for certain ranges of step height, length,

separation, and noise. Because we approach the step detection

problem in a novel way, we believe that our algorithm pro-

vides a robust alternative to existing step-detection

algorithms.

An important feature of our algorithm is that it does not

rely on statistical fitting of canonical step functions to the

data. Most of the step-detection algorithms discussed in the

introduction uses such an approach to fit a piecewise series of

canonical step functions, such as the Heaviside function, to

the data. For a data set that consists of strict step functions,

such an algorithm would be appropriate. However, for data

sets in which the plateaus of the signal are not canonical, that

is, two adjacent plateaus are connected by a line with a finite

slope, such fitting algorithms will not be ideal. Our method,

however, relies on relative probabilities within the data to

determine regions expected to have a plateau. As shown in

Figure 9, even when the slopes of lines connecting plateaus

change from step to step, the algorithm correctly identifies

plateaus in the data set.

The trials plotted in Figure 9 most closely resemble the

data traces for single-molecule DNA experiments and the abil-

ity of the algorithm—when used with preprocessed data—to

correctly identify and locate >90% of steps in these trials is

critical to a faithful analysis of experimental data.

Figure 7. A: The average percent of steps found for trials with

variable step separation is plotted for several noise width r. The

unfiltered data were analyzed for these simulations. In these tri-

als, step length and step height were held at 50 points each while

step separation was assigned values of 1, 10, 20, 30, 40, 50, 60,

70, 80, and 90. Each step parameter tuple, that is, [40,50,50], was

tested with 100 different sets of normally distributed noise. B: The

average number of false positive step identifications are plotted

for the same trials. C: The average number of false negatives for

the same trials are plotted. Step separation in arbitrary units.
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When we applied our method to analyze data from single

molecule micromanipulation experiments, we found that the

results were consistent with parameters reported in the litera-

ture. For instance, the distribution of lengths of DNA wrapped

around each histone octameric core particle was found to be

centered at the correct values: �50 nm and multiples of the

same. In addition, the number of such particles detected was

consistent with the observed change in DNA tether extension

and the estimated maximum number of octamers that could

populate the tether. The free energies of binding calculated,

�20 kBT were also consistent with the values reported in

ensemble and other single molecule experiments. These results

strongly suggest that when our algorithm is applied to experi-

mental data, the constant-extension regions are correctly

enumerated and quantified.

Another aspect of many step-detection algorithms is that

they rely on numerous user-defined parameters to achieve a

good fit of the step-functions to the data. Aside from making

such algorithms complicated to implement for people unfa-

miliar with the definitions of the parameters, manipulation of

these parameters can lead to over-fitting of the data. From the

beginning, our approach was designed to minimize the diffi-

culty of using the algorithm and to reduce the chance of over-

fitting of the data. Our method can be implemented easily

and quickly since any user input or modification is optional.

The algorithm we have presented also does not involve fitting

of a specific function to the data, which eliminates any chance

of over-fitting. Rather, we base our approach on finding the

regions of the data more likely to represent a plateau and, in

this sense, our approach may be deemed non-parametric.

We sought to minimize user input so as to reduce user

bias. In searching for certain features of the data, a user may

be able to adjust algorithm parameters to confirm a specific

result that they would like to find. It is all too easy to desire

that a small step in the data is attributable to noise when it

should not be, or vice versa, and to adjust the parameters to

either include or exclude those steps. By eliminating most user

input and relying on the mathematical properties of the data

itself, our step-detection algorithm offers a substantial reduc-

tion in the possibility for user bias to alter results.

With regard to user-defined parameters, the primary val-

ues in our algorithm that can be adjusted are the bin size for

the discrete probability distribution function and the toler-

ance for determining which peaks are to be taken as identify-

ing steps in the data. Our method for automatically

determining the bin size for the distribution function is suffi-

cient for many applications, but in situations where the steps

are closely spaced or the noise is substantial (and no filtering

is desired), it can be useful to decrease or increase the bin size

parameter. The peak tolerance parameter can be adjusted or

the value determined by comparison to the median path

lengths of all peaks (see Materials and Methods section) can

be used as default. It can be advantageous for the user to set

this value when automatic determination of the plateaus fails

to recognize data plateaus that are significantly shorter than

the majority of the plateaus in the data. A user may wish to

modify this tolerance parameter to expand the number of

peaks that are classified as representing a step in the data, but

adjusting this too far can lead to false positives.

While our algorithm is designed to detect data

“plateaus,” which may or may not be true step functions, the

algorithms discussed in the introduction are specifically tailored

to fit a series of step functions to the data. As we have shown,

our algorithm performs very well when analyzing data, which

are not a sequence of pure step-functions. To the best of our

knowledge, there are no other well-characterized methods capa-

ble of doing so. This lack of other methods was a primary driver

behind developing our algorithm, but it also makes direct

performance comparisons to existing algorithms difficult.

For the trials plotted in Figures 5 through 7, in which a

single step parameter was altered, we find that false positives

equal the false negatives. (The number of false negatives is

simply the difference between the total number of steps and

the number of steps found.) It should be noted that in princi-

ple the false positives can be larger or smaller in number than

the false negatives. That they happen to be equal in number to

Figure 8. A: An example of steps in a single-molecule DNA-pro-

tein extension experiment that have been automatically identified

by our algorithm. The red points are raw data and the blue points

are data after bilateral filtering with height 12 and width 12. The

black lines are the steps as identified by our algorithm. B: The

average step size distribution after analysis of 10 different DNA-

protein experiments by the algorithm. The results are plotted as a

histogram with bins of 10 nm. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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each other strongly suggests that the algorithm is finding only

those steps present in the signal—not more or less—but for

some of the steps is not assigning them accurately enough to

the correct locations. This result is likely due to the criterion

that we use to declare that a step has been correctly detected,

namely, the step must lie within one-half r of the true loca-

tion of the signal.

The relationship between false positives and negatives is

most likely unique to the type of signals used in Figures 5

through 7—signals in which all step parameters are the same

for all steps within an individual signal. Specifically, if the cal-

culated arc lengths for all significant peaks are relatively

equal—as would be the case for a data trace in which all steps

have the same configuration—it is trivial to classify which

peaks correspond to actual steps as opposed to which peaks

result from fluctuations due to noise. Indeed, the results plot-

ted in Figure 9 show that when step parameters are not uni-

form throughout the data trace, the number of false positives

is larger than the number of missed steps. This indicates that

the algorithm is inferring steps where there are none, rather

than being unable to accurately locate the actual steps as in

Figures 5 through 7.

Part of our method that may seem counterintuitive is

the addition of the second derivative of the PDF back into

the original PDF. This is opposite to image processing in

which the second derivative is frequently subtracted from

the image to enhance edge transitions of the image as in

unsharp masking (17). It is important to note that we are

applying the second derivative to the PDF and not the data

(or image) itself. With that clarified, our justification for

this step is primarily empirical in that we have run multi-

ple trials using subtraction of the second derivative, as well

as skipping the second derivative step altogether, and find

optimal performance when the second derivative of the

PDF is added back to the signal. Figure 3e illustrates this

effect, where the magenta signal is the sum of the PDF

(red) and second derivative (green), resulting in better iso-

lation of the significant peaks in the signal. This is an effect

we see repeatedly and is the reason we include this step in

the algorithm. A theoretical justification of this process can

be realized by examining individual peaks in Figure 3e. It

is evident that peaks in the PDF correspond to large nega-

tive values in the second derivative. The sharpness of the

peaks will generally be uncorrelated to the size of the

peaks. Therefore, when the second derivative is added back

to the PDF, the peaks in the PDF will see moderate reduc-

tion in magnitude. However, since most peaks in the PDF

are about equally sharp but differ in height, addition of the

second derivative amounts to subtracting a relatively con-

stant quantity from the peaks. This clearly effects the shal-

lower peaks more profoundly than the taller peaks, helping

to reduce the identification of nonsignificant peaks.

An aspect of our method that must be acknowledged

is that we use it primarily on monotonic data sets and

demonstrated it on monotonic data sets. The algorithm

was designed to evaluate the changes in the extension of a

DNA molecule under increasing tension as proteins disso-

ciate, which is often a monotonic function of time.

Although the algorithm is capable of finding plateaus in

nonmonotonic data sets, such use is not ideal. Developing

an extension of this method to improve the ability to ana-

lyze such nonmonotonic data is a primary goal of future

work on this algorithm. Furthermore, we hope to be able

to expand the basic framework of this algorithm to multi-

ple dimensions as well.

In summary, we have shown in detail the ability for

our novel algorithm to identify steps, or plateaus, in a data

trace. We have examined the limits of the algorithm’s per-

formance for several characteristics of the data. Further-

more, our method has proven useful in actual single-

molecule biophysical experiments, obtaining results that

agree with theoretical models and other experimental

results.

Future modifications of the algorithm will focus on

three aspects. Specifically, we suspect that a local adjust-

ment of the bin size for calculation of the probability dis-

tribution function would be more effective than the

current global definition of bin size for the distribution

function, and a peak scoring method that takes into

account the transient segment characteristics, instead of

simply the plateau segment characteristics, could more

accurately classify which peaks represent plateaus in the

data. Finally, taking into account the breadth of the peaks

that result from the analysis of the data trace, either glob-

ally or in a subset of peaks, should help to increase the

accuracy of locating the steps in the data trace.

Figure 9. Results for randomized step parameter simulations are

plotted. For these trials, the step parameters were assigned val-

ues randomly in the interval [20,200]. Thus, each step has a step

height between 20 and 200 points, step length between 20 and

200 points, and step separation between 20 and 200 points. These

parameters closely mimic the values seen in the single-molecule

DNA-protein experimental data. For each noise width r, the trials

are repeated with 100 different sets of normally distributed noise.

We show in Figure (9), the average percent steps found for these

trials for raw data (solid line) and data that has been preprocessed

with the bilateral filter (dashed line) using a filter height of 10 and

a filter width of 10. Also plotted are the average false positives for

the raw data analysis (dotted line) and the average false positives

for the preprocessed data (dash-dot line). Noise width in arbitrary

units.
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